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Abstract 
The innovations in modern unmanned aerial vehicles do pose higher requirements against 

the autopilot aircraft control. Special demand is placed by the multirotor innovative helicopters for 
their unique control system and rotor positions. 

The current article establishes the core of a quaternion based autopilot suitable for the 
innovative and award winning twelve rotor UAV helicopter Bulgarian Knight. Quaternions offer a 
number of benefits to autopilot systems, but their implementation to specialized autopilots used in 
innovative and unique drone models require exclusive attention and discussion. As a result, an 
efficient and flexible autopilot is attained, because quaternion computations are much faster and 
accurate than the other competing approaches. Nevertheless, a quaternion-based autopilot requires 
sophisticated software libraries with inherent significant complexity. The elevated accuracy and 
pliability of the quaternion method is a fertile means for developing a prototype, scientific and 
research autopilot that is suitable for customization in response to the novel UAVs specific needs. 

Notation legend: 
a Vectors are denoted with italic letters and an arrow above. 
a Quaternions are denoted with bold letters. 
0 Zero quaternion. 
1 Identity quaternion. 

Matrices are denoted by blackboard bold letters. 
Zero matrix. 
Identity matrix. 

Introduction 
The modern era of unmanned aerial vehicles (UAVs) presumes highly 

robotized autonomous flying machines, controlled by an onboard powerful 
computer in their flight maneuvers and actions. The foremost control process of the 
aircraft is the flight control, which is carried out by the autopilot. Almost all 
autopilots nowadays are constructed using quaternion algebra and quaternion 
analysis, due to the unquestionable performance benefits of this mathematical 
apparatus [1, 2]. 
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The more complex the drones become, the more sophisticated the 
autopilots have to be in order to respond to the higher demands of control 
manipulations the newer UAVs encounter [3]. In pursue of higher stability, 
invulnerability, reliability, efficiency, lower noise, either mechanical or 
electromagnetic, and higher safety, a larger number of rotors is often advised. 
Among the consumer multirotor drones the highest rotor number often is eight and 
the airframe topology used is the classic “star” topology. Neither the number of 
eight for the rotors, nor the “star” topology is optimal in terms of the above sought 
benefits. Of course, as the number of rotors increases, gradually establishes a 
prohibitively elevated complexity of the machine thus overthrowing the benefits of 
the greater number of rotors. There is a ‘sweet spot’ and it begins at twelve rotors, 
because 12 is the lowest even number of rotors a multirotor helicopter must have in 
order to implement an airframe structure with optimal geometric covering (figure 
1). Going from twelve rotors up the optimal geometric covering may be preserved, 
but the complexity of the flying machine will go higher and the airframe 
normalized weight will increase. The airframe normalized weight is the airframe 
total weight divided by the number of rotors. 

This article focuses on the quaternion mathematical apparatus utilized 
in the innovative twelve-rotor drone helicopter – The Bulgarian Knight (Fig. 1). 

Fig. 1. Bulgarian Knight award winning dodecacopter 

Quaternion analysis suitability to autopilot systems 
Quaternions are used mostly to present rotations, but may be applied to the 

whole mathematical apparatus for computations including all mechanical models 
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the autopilot implements such as the 3D geometric model, 3D kinematic model, 3D 
dynamic model, and so on [4]. 

Nevertheless, the rotation matrix is the most common mathematical object 
used to hold spatial rotations in the three dimensional Euclidean space as described 
in [5]. There are other means as well, such as Euler angles and quaternions [6]. The 
latter have certain well pronounced benefits over the other approaches such as: 

1. A smaller number of scalars used to describe the rotation, compared to
a matrix form: 4 instead of 9 scalars. Thus the rotation quaternion
consumes less computer memory.

2. Smaller number of mathematical operations required to calculate a
rotation compared to the matrix form [7].

3. Easier to normalize than a rotation matrix.
4. Gimbal lock is not present as is the case with Euler angles.
5. Rotation quaternion exhibits slower degradation due to accumulation

of numerical errors than the rotation matrix [8]. The degradation raises
distortion of the rotation matrix orthogonality.

6. The transformation from rotation quaternion to another representation
is fast and comfortable. This is not the case with rotation matrix and
Euler angles [9].

7. When a rotation matrix is irreplaceable, the transformations between
rotation quaternion and rotation matrix are convenient and reasonably
fast [10].

All the above advantages gain the predilection for quaternions as the 
method of choice used to realize spatial rotations in autopilot systems, especially in 
autopilots with high level of safety, efficiency and computing accuracy. Hence, in 
most modern autopilot systems, from small drones to large airplanes the preferred 
mathematical method is quaternions. 

Quaternion prerequisites 
Quaternions were introduced by W. Hamilton in the year of 1843 [11]. 

Later, vector analysis followed as a result of quaternion analysis simplification [12]. 
The next paragraphs will briefly summarize the quaternion mathematical basic 
principles to aid the reader in comprehending all formulations about autopilot 
algorithms presented in the following sections of the current paper [13]. For 
deduction of some of the formulas and thorough examination of quaternion 
properties the reader may consult the following books on quaternions [5, 14–16]. 

A quaternion is defined through three objects called fundamental 
quaternion units: i , j , and k . There is a strong resemblance to complex numbers, 
but a quaternion has four elements instead of two. Hamilton defined quaternions as 
follows [11]: 
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(1) w x y z= + + +a i j k  

In (1) a  is a quaternion with elements w , x , y , and z . Other notations are:
( ) [ ], , , ,w x y z w v w x y z⇔ ⇔ + + +i j k , where v  is a three-dimensional vector

( ), ,x y z .
Note that lowercase bold is used to denote quaternions in this article. The 

basis elements themselves are quaternions. The basis element scalar 1 is the 
identity element and is represented by the identity quaternion: 

(2) ( ) [ ]1,0,0,0 1,0 1= = =1

The zero quaternion is a quaternion with all elements zeros: 

(3) ( ) [ ]0,0,0,0 0,0 0= = =0

A quaternion is invariant under multiplication by 1. Quaternion multiplication is 
defined through the products of the basis elements: 

(4) 1= = = = −ii jj kk ijk  

This equation was carved by Hamilton on a stone on Brougham Bridge over the 
Royal Canal in Dublin on October 16th, 1843. It holds all the essence of 
quaternions. From (2) it is easy to derive all combinations of basis products: 

(5) =ij k , =jk i , =ki j  

(6) = −ji k , = −kj i , = −ik j  

From (4), (5), and (6) the general multiplication of two quaternions is derived: 

(7) 
( )( )

[ , ]
w x y z w x y z

ww vv wv w v v×v
′ ′ ′ ′ ′= + + + + + + =
′ ′ ′ ′ ′− + +

qq i j k i j k
    

Quaternions addition and multiplication operations obey the associative law: 

(8) ( ) ( )′ ′′ ′ ′′+ + = + +q q q q q q
(9) ( ) ( )′ ′′ ′ ′′=qq q q q q
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These two operations obey also the distributive law: 

(10) ( )′ ′′ ′ ′′+ = +q q q qq qq

Further, the addition law is commutative: 

(11) ′ ′+ = +q q q q  

For the product of a quaternion with itself one obtains: 

(12) 2 2 2[ , 2 ]w v wv= −q    

One should notice that the quaternion product is non-commutative: 

(13) ′ ′≠qq q q  

The quaternion conjugate is defined as: 

(14) [ , ]w x y z w v= − − − = −q i j k 
  

The product of a quaternion with its conjugate has similar properties to complex 
numbers: 

(15) 2 2 2 2 2 2[ , ] [ ,0]ww vv wv wv w v w x y z= = + − + = + = + + +qq qq    
 

And also the following rule holds: 

(16) ( )~ =qp pq 

Quaternion norm is used to keep a unit rotation quaternion stable: 

(17) 2 2 2 2w x y z= = = + + + =q qq qq q  

A multiplicative law is applicable to the norm: 

(18) = = =pq p q q p qp  
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The unit quaternion is defined as the quaternion divided by its norm. It is also 
called a versor: 

(19) =q
qn
q

The unit quaternion has a unit norm: 

(20) =qn 1  

With finite rotations (they shall be called just rotations from now on), the 
order they are applied to a vector matters. Rotations are naturally expressed by 
algebraic systems with non-commutative products. At first glance, the non-
commutability would affect the quaternion reciprocal: 

1 1
r l
− −= =qq q q 1  and it is expected that 1 1

r l
− −≠q q

But taking into view (15) it is observed that: 

(21) 1 1 1
2 2 2l r

− − −= = ⇒ = = =
qq qq q1 q q q
q q q
  

An important property of the versor is that its reciprocal is equal to its conjugate. 
This formula follows from (17) and (21): 

(22) 
1

1 1
2

−

− − 
= = = = = =  
 

q q
q q q qn q q q n
q q qq

  




According to the above properties of quaternions and taking into account 
that for any nonzero quaternion q , there is a quaternion −q  such that 

( )+ − =q q 0  and the non-commutative law it follows that quaternions are a non-
commutative division ring. If quaternions had a commutative product they would 
have been a field. 

As mentioned above, the three dimensional rotation is an important 
procedure in autopilot systems. The rotation is defined as follows: 
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(23) cos , sin
2 2R nθ θ =   

q 

In (23) n  is a unit vector specifying the axis of rotation and θ  is the angle of
rotation. It should be noted that the rotation quaternion is a versor [17]: 

(24) 
( )2 2 2 2 2

2 2

cos sin
2 2

cos sin 1 1
2 2

R R R x y zθ θ

θ θ

= = + + + =

+ = =

q q q

Immediately follows that the reciprocal of the rotation quaternion is its conjugate: 

(25) 1
R R
− =q q

The rotation operator on a vector using a rotation quaternion is as follows: 

(26) 1
R R R R

−=q vq q vq

Here quaternion [ ]0,v=v   represents the vector that is to be rotated. Changing the 
sign of the rotation quaternion gives the same rotation: 

(27) 
cos , sin cos , sin

2 2 2 2

2 2cos , sin
2 2

R n n

n

θ θ θ θπ π

π θ π θ

      − = − − = + + =           
 + +   

        

q  



Obviously, quaternion R−q  rotates by an angle of θπ +2 , but this is the same 

rotation as rotating byθ , because o3602 =π  adds full turn to the rotation and does 
not act as a transformation. To perform an inverse rotation to an angle of θ− one 
should use the conjugate of the rotation quaternion: 

(28) 1
R R R R

−=q vq q vq

Applying two consecutive rotations Rp  and Rq  yields: 

=

=
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(29) ( )~
R R R R R R R R R R= =p q vq p p q v p q t vt 

The new composite rotation is R R R=t p q . The rotation of a product of two vectors, 
represented as quaternions, is equal to the product of the rotations of these two 
vectors, represented as quaternions: 

(30) R R R R R R=q abq q aq q bq  

Autopilots perform numerical integration according to their kinematic and 
dynamic models [18]. For this purpose differentiation of the rotation quaternion is 
required. The derivative of a rotation quaternion, in respect to time, is as follows 
[19]: 

(31) 
1
2

R
R R

d
dt

= =
q q ωq

Quaternion [ ]0,ω=ω 
. Vector ω  is the vector of the angular velocity. By 

differentiating (31), the second derivative may be obtained as follows: 

(32) 21 1 1 1
2 2 2 4R R R R R= + = +q ωq ωq εq ω q  

Quaternion [ ]0,ε=ε 
represents the vector of the angular acceleration ε . The

derivative product rule in regard to time holds for quaternions. One should notice 
that in the general case of product of two quaternion functions with quaternion 
arguments the derivative product rule in regard to a quaternion variable does not 
hold [20]. 

Finally, the autopilot control calculations may require at certain places 
transformation from rotation matrix to rotation quaternion and vice versa. The 
transformation from rotation quaternion to rotation matrix is performed according 
to the next formula [21]: 

(33) 

2 2 2 2
00 01 02

2 2 2 2
10 11 12

2 2 2 2
20 21 22

2 2 2 2
2 2 2 2
2 2 2 2

w x y z xy wz xz wy R R R
xy wz w x y z yz wx R R R
xz wy yz wx w x y z R R R

 + − − − +  
   = + − + − − =   
   − + − − +   
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Fig. 2. Rotation matrix to rotation quaternion transformation algorithm 
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This rotation matrix may be used to rotate a row-matrix presented vector  
using the operator . The transformation from rotation matrix to rotation 
quaternion is more complex, due to a concern about the numerical stability. 
Division by small numbers needs to be avoided [21]. The idea is illustrated with 
the algorithm presented on figure 2. The algorithm first checks if the trace of the 
matrix is positive. In this case 0.5w > . If this condition is not met, the largest 
diagonal element is chosen, because it corresponds to the largest of the other three 
quaternion components absolute values x , y , or z . One of the latter three must 

be larger than 0.5w > . 

3D geometric parallel between quaternions, vectors and matrices 
There are many 3D geometric operations that are required to be 

implemented in an autopilot. Most of these operations are well known from vectors 
and matrices, but not so evident when utilizing quaternions. A discussion of such 
operations follows. 

A vector may be presented in matrix form as a one-column or one-row 
matrix. This paper uses the one-row notation. As shown in (26) a quaternion may 
represent a vector: 

(34)  k ⇔


[ ] 0,x y z k = ⇔ =  k


Using (7) the dot and cross products of two vectors represented as 
quaternions may be easily calculated: 

(35) (0 )(0 ) [ , ]x y z x y z kk k ×k′ ′ ′ ′ ′ ′= + + + + + + = −kk i j k i j k
  

 

From (35) it follows that the dot product of two vectors represented as quaternions 
is: 

(36)  ( )Rekk′ ′⇔ − kk


In (36) function ( )Re  returns the real part of a quaternion w . The cross product
of two vectors is computed in a similar way: 

(37)  ( )Imk k′ ′× ⇔ kk
 
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Again, in (37) function ( )Im  returns the pure imaginary part x y z+ +i j k .

A general kinematic model based on quaternions used in autopilots 
In this section the equations describing particle kinematics in a non-inertial 

reference frame are examined using quaternion formalism instead of vector 
formalism or matrix formalism. Let Oxyz  be the inertial and not moving reference 
frame and O ′  ′ x y z ′ ′  be a non-inertial, moving and rotating reference 
frame (Fig. 3). All variables in regard to the inertial reference frame are non-
primed and all variables in regard to the non-inertial reference frame are primed. 

Fig. 3. Kinematics of a point particle P  in regard to an inertial reference frame Oxyz
and non-inertial reference frame O x y z′ ′ ′ ′  described by quaternions

The non-inertial reference frame O x y z′ ′ ′ ′  has position Cr  and orientation q  in 
regard to the inertial reference frame Oxyz . The latter two quantities are 
quaternions. Quaternion Cr  represents a vector and has zero real part. Quaternion 
q  is a rotational quaternion. The position of the particle P  in reference frame 
Oxyz  is totr  and in reference frame O x y z′ ′ ′ ′  is ′r . Quaternion ′r  in regard to 
reference frame Oxyz  is ′=r qr q : 

(38) tot C C ′= + = +r r r r qr q



104 

To proceed further with the derivatives of (38) the reader must consider the 
following equations that follow from (31): 

(39) 
1 1 1
2 2 2

′= = =q ωq qqωq qω   

(40) 2=ω qq 

(41) 2′ =ω qq   

The derivative of the rotation quaternion conjugate will also be utilized. Hence it is 
deduced in the following equation: 

(42) ( )1 0 0d
dt

= ⇒ = ⇒ + = ⇒ = − ⇒ = −qq qq qq qq qq qq q qqq               

By elaborating further on (42) one obtains: 

(43) 
1 1
2 2

= − = − = −q qqq qωqq qω      

And also: 

(44) 
1 1
2 2

′= − = − = −q qqq qωqq ω q      

Deriving ω  from (43) results in: 

(45) 2= −ω qq  

When applying the rotation operator with quaternions we should mark off that its 
derivative has the form. 

(46) 
( )

1 1
2 2

d
dt

′ ′ ′ ′= + + =

′ ′ ′ ′ ′ ′ ′ ′+ − = +

qa q qa q qa q qa q

qω a q qa q qa ω q qω a q qa q

     

      
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The above equation relies on the property of the quaternion product to be anti-
commutative when the two quaternions have zero real part (represent vectors). 

Now (38) may be differentiated to obtain the equation of speed: 

(47) tot tot C C C′ ′ ′ ′ ′ ′= = + = + + = + +v r r r r qω r q qr q v qv q qω r q        

And differentiating again the equation of acceleration is deduced: 

(48) ( )2 Imtot tot C C ′ ′ ′ ′ ′ ′ ′ ′= = + = + + + +a r r r a qa q qω v q qω ω r q qε r q        

Equation (48) may be written entirely in the inertial reference frame: 

(49) ( )2 Imtot C= + + + +a a a ωv ω ωr r εr

or in the non-inertial reference frame: 

(50) ( )2 Imtot C′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − − −a a a ω v ω ω r ε r  

The terms in (50) are the different accelerations that appear when a particle is 
moving in a non-inertial reference frame: 

(51) net tot C′ ′ ′= −a a a   - net inertial acceleration in quaternion form 

(52) 2cor′ ′ ′= −a ω v - Coriolis acceleration in quaternion form 

(53) ( )Imcen′ ′ ′ ′= −a ω ω r  - centrifugal acceleration in quaternion form 

(54) ang′ ′ ′= −a ε r  - Euler acceleration in quaternion form 

In the above four equations only the imaginary part of the result is of significance, 
as it holds a vector. The real part should be ignored. 

A general dynamic model based on quaternions used in autopilots 
The most common dynamic model with variances used in autopilots is the 

rigid body motion model of the aircraft. Further in this section the rigid body 
motion dynamic model shall be discussed in terms of quaternion implementation. 
On Fig. 4 a numerical 3D simulation is used to visualize the examined 
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phenomenon. The body reference frame O x y z′ ′ ′ ′  (non-inertial) is drawn with cyan 
colored vector arrows. The space reference frame Oxyz  (inertial) is visualized 

using white arrows. Angular momentum vector L


 is shown in magenta color. The
external force arm coincides with O z′ ′


 vector. The external force vector F


 is in

red color and the moment of external force vector M


 is drawn in green color. The 
orange vector is the angular velocity vector ω .

The equations of rigid body motion also known as Euler equations in 
matrix form are as follows: 

(55) ’ = ’ ’ ⇒ ’ = ’ ~ ’  ⇒ = 

(56) ext =
d
dt

( ) =
d
dt

( ’ ) = 

d
dt

( ’)  + ’
d
dt

( ) =
d
dt

( ’) ’  + ’ ’
d
dt

( )

The (55) inference uses the well-known similarity transformation that rotates an 
arbitrary 3 3×  matrix (in this case ’) using a rotation matrix  and thus transforms 
the 3 3×  matrix from body reference frame O x y z′ ′ ′ ′  to space reference frame 
Oxyz : 

(57) ~ ’ = 

The matrix ~ is the transposed of . In (55) and (56)  is the angular momentum 
vector in matrix form,  is the angular velocity vector in matrix form and ext is 
the moment of external force vector in matrix form (one-row matrices). The 3 3×  
matrix is the moment of inertia tensor, which is invariant in the body reference 
frame for a given non-changing rigid body. ’ is defined as: 

(58) ’ 
xx xy xz

xy yy yz

xz yz zz

I I I
I I I
I I I

′ ′ ′ 
 ′ ′ ′= = 
 ′ ′ ′ 
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( )
2 2

2 2

2 2

, ,
z y x y x z

x y x z y z
V

x z y z x y

r r r r r r
r r r r r r x y z dx dy dz
r r r r r r

ρ
′

′ ′ ′ ′ ′ ′ + − −
 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − 
 ′ ′ ′ ′ ′ ′− − + 

∫∫∫

Fig. 4. Rigid body motion in a numerical 3D simulation 

In (58) we observe that tensor ’ is a symmetric matrix. Vector x y zr r r′ ′ ′    is the
radius-vector of the current infinitesimal point in the rigid body that is being 
integrated. Scalar function ( ), ,x y zρ ′ ′ ′  gives the density of the rigid body at the

current point of integration. The integration is performed over the volume V ′  of 
the rigid body. For an elaborate derivation of (58) please consult [22]. Further, ’ is 
a diagonal matrix if the body reference frame is chosen along the principal axis of 
inertia: 

(59) ’ 

0 0
0 0
0 0

xx

yy

zz

I
I const

I

′ 
 ′= = 

′  
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Its inverse is also a diagonal matrix and has the simple form of 

(60) ’-1 

1

1

1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

xx xx

yy yy

zz zz

I I
I I const

I I

−

−

−

′ ′   
   ′ ′= = =   
 ′ ′   

Converting the rigid body motion equations into quaternion form requires 
the introduction of the Hadamard product of two quaternions: 

(61) ( ), , ,a b a b a b a bw w x x y y z z=a b

The diagonal tensor ’ will be presented as a quaternion ( )0, , ,xx yy zzI I I′ ′ ′ ′=I . 

Analogously, ’-1 will be presented as ( )1 1 1 10, , ,xx yy zzI I I− − − −′ ′ ′ ′=I . Now by 
transforming (55) and (56) to quaternion form we get: 

(62) ’= ’ ’ ⇒ 1−′ ′ ′ ′ ′ ′= ⇒ =L ω I ω L I   

(63) ext=
d
dt

( )⇒  

( ) ( )ext ′ ′ ′ ′ ′ ′ ′ ′= = + = +M L qω L q qL q qω ω I q q ω I q      

(64) ( )ext ext′ ′ ′ ′ ′ ′= = +M qM q ω ω I ω I  

A special case of rigid body motion is the free rigid body motion when the moment 
of external force is zero: 

(65) ( )0ext const′ ′ ′= = ⇒ = = =M L L qL q q ω I q  

The second constant of free rigid body motion is the kinetic energy of rotation
KrotE : 

(66) 
( ) ( ) ( )( )ReRe Re
2 2 2KrotE const

′ ′ ′′ ′
= − = − = − =

ω I ωLω L ω 
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Quaternion numerical integration used in autopilots 
The current orientation of the body reference frame (i.e. the aircraft 

airframe) in respect to the space reference frame is obtained by integrating the 
angular velocity vector. The latter is derived from the onboard gyroscope. The 
onboard gyroscope measures the angular velocity ′ω  in regard to the body 
reference frame. Equation (39) comes in hand and it should be now numerically 
integrated:  

(67) 0
0

t

dt
∆

= + ∫q q q

Different integration schemes may be implemented such as Euler, Runge-Kutta, etc. 
A symplectic method of integration is preferred as it preserves the rotational 
energy under conservative torque. Below an example is given with the symplectic 
semi-implicit Euler–Cromer integration method:  

(68a) ( )( ) 1
1 ( )n n n ext n n n n t−
+′ ′ ′ ′ ′ ′= + − ∆ω ω q M q ω ω I I  

(68b) ( )1 1_n ngyroscope omega t+ +′ =ω

(68c) 1
1 1

1
2 2

n
n n n n n

tt +
+ +

′ ∆ ′= + ∆ = + 
 

ωq q q ω q 1  

Equation (68a) demonstrates the predicted angular velocity. The gyroscope read 
angular velocity is presented in (68b). Finally, the new orientation is calculated in 
(68c). The autopilot utilized algorithm selects between the predicted angular 
velocity according to the dynamic model and the gyroscope read angular velocity. 
Further corrections on the current position are carried out according to other 
autopilot sensors and procedures, which are not disclosed in (68).  

In the above example the so called naive quaternion integration was 
implemented. A better approach is to integrate the quaternion over the hypersphere 
surface in the four dimensional quaternion space [23]. This four dimensional 
sphere has radius of 1 (see figure 5). The rotation quaternions nq  and 1n+q  are unit 
quaternions and lie on the unit hypersphere. The natural method of integrating the 
rotation quaternion is to interpolate it over the hypersphere surface. The time 
change for one integration step of the rotation quaternion nq  is t∆q . The latter 
quaternion is perpendicular to nq , but having non-infinitesimal length goes out of 
the hypersphere. 
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Fig. 5. Integrating the quaternion over the hypersphere surface 

The new rotation quaternion 1n n t+ = + ∆q q q  has magnitude > 1. On the other 
hand the correct value for 1n+q  is a quaternion positioned on the hypersphere. It 
also lies on the two dimensional unit circle defined by nq  and t∆q  (Fig. 5). The 

arc of the hypersphere between nq  and 1n+q  has length tϕ = ∆q . It follows that 

quaternion sinϕ=
qb
q



 and quaternion cosn ϕ=a q . For 1n+q  we obtain: 

(69) 1 cos sinn n ϕ ϕ+ = =
qq a + b q +
q



 

Conclusion 
The utilization of quaternions in autopilots has been a privilege to large 

and expensive aircraft till recently. The quaternion arithmetic computations are 
much faster and more accurate than other approaches, but require well written 
software libraries of significant complexity. The increased accuracy and flexibility 
of the quaternion method is a fruitful avenue for developing prototype, scientific 
and research autopilot systems. Furthermore, the modern unmanned helicopters 
do require custom made autopilots that can respond to their high specific 
needs. Such machine is the award winning The Bulgarian Knight Dodecacopter  
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that has an unique rotor arrangement and benefits from a custom and specialized 
accurate and fast autopilot, realized using the quaternion approach. 
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АВТОПИЛОТ ЗА ДВАНАДЕСЕТОКОПТЕРИ, 
БАЗИРАН ВЪРХУ КВАТЕРНИОНИ – ЧАСТ I 

С. Забунов 

Резюме 
Иновациите в областта на модерните безпилотни летателни апарати 

поставят по-високи изисквания към автопилотите. Иновативните мулти-
роторни хеликоптери, поради своята уникална система за контрол и 
разположение на роторите, изискват от автопилотите специални условия. 

Настоящата статия представя ядрото на автопилот, който е базиран 
върху кватерниони. Този автопилот е подходящ за иновативния и спечелил 
международни награди дванадесет роторен безпилотен хеликоптер 
“Българският Рицар”. Кватернионите предлагат на автопилотните системи 
редица предимства. Тяхното приложение в специализираните автопилоти 
изисква изключително внимание и обсъждане. Като резултат се получава 
ефективен и гъвкав автопилот, защото кватернионните изчисления са много 
по-бързи и по-точни от другите конкурентни подходи, но такъв автопилот 
изисква сложни софтуерни библиотеки. Повишената точност и адаптивност 
на кватернионния метод го правят обещаващо средство за разработка на 
прототипни, научни и изследователски автопилотни системи, подходящи за 
специфичните нужди на иновативните дронове. 
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