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Abstract: Plant disease detection with remote sensing techniques, based on hyperspectral reflectance 

measurements, is a challenging area that can have a significant economic and environmental impact on 
agricultural yield management. Leaf spectral reflectance is a sensitive indicator of a variety of environmental 
factors affecting plants such as stress, diseases, drought, and senescence. This study aims to relate changes in 
plant physiological status caused by a biotic stress (viral infection) to leaf spectral reflectance and to identify 
wavebands that best discriminate this disease. Young potato plants, cultivar Armada, infected with Potato Virus Y 
(PVY) are investigated. Hyperspectral reflectance data were collected by a portable fiber-optics spectrometer in 
the visible and near-infrared spectral ranges (400–1100 nm). Wavebands with most disease sensitivity were 
identified by means of four empirical approaches and statistical analyses (Student’s t-test, cluster analysis). The 
results demonstrate that hyperspectral reflectance data in red and red edge spectral ranges (680–740 nm) allow 
detection and quantification of plant stress due to viral infection and are most sensitive to related changes in 
biophysical parameters.  
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Резюме: Откриване на болести по растенията чрез метод за дистанционни изследвания, 

базиращ се на хиперспектрални измервания на отразена радиация, е предизвикателна област, която 
може да окаже значително икономическо и екологично въздействие върху управлението на добивите в 
селското стопанство. Спектралното отражение на листата е чувствителен показател за различни 
фактори на околната среда, влияещи върху растенията като стрес, болести, суша и стареене. Това 
проучване има за цел да свърже промените във физиологичното състояние на растенията, причинени 
от биотичен стрес (вирусна инфекция) и да идентифицира спектралните диапазони, които най-добре 
разграничават това заболяване. Изследвани са млади картофени растения сорт Aрмада, заразени с 
картофен вирус Y (PVY). Хиперспектралните отражателни данни са регистрирани с преносим 
спектрометър във видимата и близката инфрачервени области на спектъра (400–1100 nm). 
Вълновите диапазони с най-голяма чувствителност към болестта бяха идентифицирани с помощта 
на четири емпирични подхода и статистически анализи (t-тест на Стюдънт, клъстерен анализ). 
Резултатите показват, че хиперспектралните отражателни данни в червения спектрален диапазон 
и в червения ръб (680–740 nm) дават възможност за установяване и количествена оценка на 
растителния стрес поради вирусната инфекция и са най-чувствителни на промените във 
биофизичните параметри.  
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Introduction 
 

The reliable detection and identification of plant disease and plant stress are very essential for 
preventing the loss in yield of the agricultural crops [1]. Monitoring of plant health and detecting 
pathogens early are essential to reduce disease spread and facilitate effective management practices. 
It is difficult to monitor the plant diseases manually at each stage, which requires more effort and time. 
The traditional molecular methods such as serological assays and nucleic acid-based methods (PCR 
variants) are the most available and effective to confirm disease diagnosis, but they are not very 
reliable at the asymptomatic stage [2]. Remote sensing (RS) technologies are innovative and 
alternative methods for effective, reliable, and early detection of pathogen infections. RS techniques 
coupled with spectroscopy-based methods allow high spatialization of results, these techniques may 
be very useful as rapid preliminary identification of primary infections [3]. The RS scientific community 
defines plant disease monitoring as: detection (deviation from healthy), identification (diagnosis of 
specific symptoms among others and differentiation of various diseases), and quantification 
(measurement of disease severity, e.g., percent leaf area affected) [4]. 

RS techniques provide opportunities for non-destructive detection of plant diseases, especially 
hyperspectral technologies. RS is a technique obtaining information on an object by measuring the 
electromagnetic energy reflected/backscattered or emitted by the surface of the Earth [5]. The 
increased spatial resolution of recent satellite sensors and the decrease in the cost of data acquisition 
are making RS really competitive for the integration with traditional techniques. RS offers the 
advantages of a large amount of data from the spectral response and the possibility of working at 
different spatial scales, with available sensor resolution from a single leaf level to an entire region [3]. 

In scientific literature the methods for RS data analyses related to detecting of plant disease 
can be categorized into four groups: (1) correlation and regression analysis of disease presence and 
severity with spectral response in specific bands and/or intervals of electromagnetic spectrum [6, 7]; 
(2) assessment and derivation of spectral vegetation indices (SVIs), general or specifically introduced, 
sensitive to disease presence [8, 9]; (3) data mining algorithms applied to spectral data processing 
and feature extraction/selection for data dimensionality reduction [10, 11]; and (4) machine learning 
and classification techniques, parametric and non-parametric, supervised and unsupervised, for 
producing results which are classified depending on disease presence/ absence and possibly severity 
levels [3, 12, 13].  

The plant spectral reflectance is a sensitive indicator of a variety of environmental factors 
affecting plants such as stress, diseases, drought, and senescence. Measurement of leaf reflectance 
is a fast, non-destructive method for plant health estimation which provides valuable insight into the 
physiological performance of the leaves. Reflectance data indicated consistent and diagnostic 
differences in the red edge portion (680–740 nm) of the spectrum among the various samples and 
populations of leaves. The red edge of the reflectance curves, the maximum slope between the red 
and near-infrared (NIR) wavelengths, is strongly correlated with the foliar chlorophyll (Chl) content and 
is a good estimator for stress monitoring [14]. The main red edge parameter, red edge position (REP), 
is the inflection point of the slope of the spectrum. REP is an important index that indicates the abrupt 
leaf reflectance change between 680 nm and 740 nm of the vegetation spectra caused by the 
combined effects of strong Chl absorption and leaf internal scattering [15]. Increases in the amount of 
Chl result in a broadening of the major Chl absorption feature centred around 680 nm, causing a shift 
in the slope and REP towards longer wavelengths [16]. Various techniques have been developed for 
the extraction of REP parameters from different sources of spectral data with minimized estimation 
error and improved performance.  

This study aims to relate the leaf spectral reflectance to changes in plant physiological status 
caused by biotic stress (viral infection) and to identify wavebands that best discriminate this disease. 
Young potato plants, cultivar Armada, infected with Potato Virus Y (PVY) are investigated. Several 
techniques have been applied and compared for accurate estimating of the REP, such as the 
maximum of the first derivative, the Lagrangian interpolation method, the linear extrapolation method, 
the first derivative main peak decomposition. 

 

Spectral measurements 
 

Young potato plants, cultivar Armada, grown in controlled greenhouse conditions were 
investigated. Some of the plants were healthy (control) and some were infected with Potato Virus Y 
(PVY). Leaf spectral reflectance data were collected from fresh detached leaves by a portable fibre-
optic spectrometer USB2000 (Ocean Optics, USA) in the visible and NIR spectral ranges  
(450–850 nm) in 1170 narrow bands at a spectral resolution of 1.5 nm. The spectral reflectance 
characteristics (SRC) of the investigated plants were determined as the ratio between the reflected 
from the leaves radiation and this one reflected from the diffuse reflectance standard.  
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Data analyses  
 

The application of RS data for plant disease assessment is relying on adequate and effective 
data processing techniques because they are intrinsically high dimensional. Especially when dealing 
with hyperspectral data, in order to extract the largest amount of information data, processing and 
analysis techniques are a crucial asset. The data processing methods used in this study are shown  
in Table 1. 

 
Table 1. Applied methods 
 

REP technique Equation Subject  Reference 
Maximum of first 
derivative of 
reflectance spectrum 
(MFD) 

 

 

First derivative of 
the SRC in 
interval 680 nm 
– 760 nm 

[16] 

Lagrangian 
interpolation method 

 

 

 

 

First derivative of 
the SRC in 
interval 680 nm 
–760 nm 

[16] 

Linear extrapolation  

Red line:  

NIR line:   

 

First derivative of 
the SRC 
(680 nm–694 nm 
and  
724nm–760 nm) 

[17] 

First derivative main 
peak decomposition 

 

First derivative of 
the SRC 

Used in 
this study 

 
1. Maximum of the first derivative (MFD) 
First derivatives of the leaf reflectance spectra of healthy and infected potato plants were 

calculated using the equation in row 1 (Table 1). REP is determined as a maximum of the peak in the 
spectral range 680–760 nm. Extraction of REP, which is based on derivative analysis, minimizes 
interpolation and computation errors; it is one of the simpler curve fitting techniques [18]. 

2. Lagrangian interpolation method 
The Lagrangian technique uses three points interpolation for estimating REP. It is applied to 

the first-derivative transformation of the reflectance spectrum. The technique fits a second-order 
polynomial curve to three bands, which need not be equally spaced, centered around the maximum 
slope position. A second derivative is then performed on the Lagrangian equation to determine the 
maximum slope position (equations at row 2 in Table 1) [16].  

3. Linear extrapolation 
The linear extrapolation technique is designed to mitigate the destabilizing effect of the double 

peak feature on the correlation between Chl and REP and track changes in slope near 700 nm and 
725 nm, where derivative peaks (Fig. 1) occur [17]. The REP is calculated as the wavelength at the 
intersection of two straight lines (Eqs. at row 3 in Table 1) extrapolated through two points on the far-
red flank and two points on the NIR flank of the red edge (680–740 nm) first derivative reflectance 
spectrum. 

4. First derivative main peak decomposition 
This method is applied when a double-peak feature is observed in the first derivative of the 

reflectance spectrum. The position and amplitude of the peak around 700 nm can be used as an 
estimator of the Chl content. The change in the amplitude of the second peak indicates the change of 
the biomass or/and the internal structure of the cellular tissue. The first peak is greater when the Chl 
effects dominate, which occurred during the initial and final stages of the plant cycle [19].  

 

Results and discussion 
 

The averaged SRC over all measurements (up to 30 areas) of healthy (control) and infected 
with PVY potato leaves are shown in Fig. 1a). The spectral reflectance of infected  leaves increased in  
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Fig.1 a) Averaged spectral reflectance characteristics (SRC) of healthy and infected potato leaves; b) first 
derivative curves of the averaged SRC of healthy and infected leaves 

 
the green peak (500-670 nm) and decreased in the NIR range due to a reduction of the Chl content 
and changes in leaf tissue. The first derivative curves in the range of red edge wavelengths (Fig.1b) 
are shifted towards the shorter wavelengths because of the narrowing of the Chl absorption peak, 
centered around 680 nm. This shift is an indicator of the reduction of the Chl content in leaves and for 
changes in the physiological status of plants, respectively, for the presence of a disease. The spectral 
distribution of REPs of the reflectance spectra of all measured areas of healthy and infected leaves, 
obtained by the first derivative method, is shown in Fig. 2. Two separate clusters are being formed, 
testifying to significant changes of data in the red edge spectral range. The location of the REPs and 
the results of statistical analysis are given in Table 2. 
 

  
Fig. 2. REPs of the reflectance spectra of healthy 

and infected potato plants, cultivar Armada.  
The averaged REP values are shown by a black X. 

Fig. 3. REPs of the reflectance spectra of healthy and 
infected potato plants, cultivar Armada.  

The averaged REP values are shown by a black X 

 

The three point Lagrangian interpolation technique was applied to the first derivatives of the 
reflectance spectra following the algorithm:  

1. Wavelength max and the value of the maximum of the first derivative (MDF) at max were 
determined;  

2. Values of the first derivative of the reflectance spectra at wavelengths 10 nm before and  

10 nm after max were determined;  
3. REPs were calculated by the equations in row 2 of Table 1. 
The distribution of the REPs, calculated by the Lagrangian interpolation method, is shown in 

Fig. 3. Similar to the results from the first method two clusters are separated. The calculated REPs 
and the results from statistical analysis are given in Table 2. 

Algorithm of the linear extrapolation method:  
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1. The slope on the far-red flank of the first derivative reflectance spectrum in red edge was 
extrapolated with a straight line through two points (680–694 nm);  

2. The slope on the NIR flank of the first derivative reflectance spectrum in red edge was 
extrapolated with a straight line through two points (732–760 nm); 

3. The REP was calculated as the wavelength at the intersection of two straight lines 
(equations at row 3 in Table 1).  

The REPs are shown in Fig. 4 and the results from the statistical analysis are given in Fig. 4. 

 

Fig. 4. Red edge position of the averaged SRC of healthy and infected potato leaves, cultivar Armada, 
obtained by the linear extrapolation method 

 
Algorithm of the first derivative main peak decomposition (FDMPD):  
1. FDMPD in the spectral range 670–770 nm was approximated by Origin software into two 

peaks. The best approximation was accepted this one with a maximum coefficient of determination R2.  
The wavelengths of the peak maximums are shown in Fig.5. The big peak position at 715 nm  

 
Fig. 5. Red edge position of healthy and infected potato leaves, cultivar Armada, obtained by the first 

derivative main peak decomposition method 

 
to 720 nm is an estimator of the Chl content and it is shifted to the shorter wavelengths for infected 
leaves with 2.28 nm. The change  in the amplitude of the  second peak indicates the  change in  cell  

 
 Table 2. Results from statistical analysis (Student’s t- test) 
 

Method 
REP of SRC of 

healthy plants, nm 

REP of SRC of 
infected plants, 

nm 
t stat p 

Difference, 
nm 

1 2 

MFD 711.89 702.48 9.12 *** -9.40 4.95 1.05 

Lagrangian 
interpolation  

712.67 709.14 6,74 *** -3.53 2.45 0.82 

Linear 
extrapolation  

694.30 689.35 19.64 *** -4.95 1.05 0.71 
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structure. The decrease of the amplitude and area of the first peak is related to the degradation of the 
leaf pigments, more strongly to the Chl. The results from statistical analysis (Student’s t- test) of the 

REP datasets of the SRCs of healthy and infected leaves are given in Table 2, where 1 and 2 are 
the dispersions of the REPs distribution. 

 
Conclusions 

 

The red edge position of the reflectance spectra (680–740 nm) strongly correlated with the 
foliar Chl content and was extracted and evaluated from hyperspectral data as a good estimator for 
plant health. Four techniques for REP detection were applied and compared (maximum of the first 
derivative, Lagrangian interpolation method, linear extrapolation method, first derivative main peak 
decomposition). The best results were given by the Lagrangian interpolation method (the difference 
between REPs of SRC of healthy and infected potato plants is 3.53 nm). The maximum of the first 
derivative because of the destabilizing effect of the double-peak feature proved most inaccurate 
(difference - 9.4 nm). The results demonstrate that hyperspectral reflectance data in the red and red 
edge spectral ranges can be used to quantify the plant stress due to viral infection and related 
changes in biophysical parameters. 
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