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Abstract: Plant disease detection with remote sensing techniques, based on hyperspectral reflectance
measurements, is a challenging area that can have a significant economic and environmental impact on
agricultural yield management. Leaf spectral reflectance is a sensitive indicator of a variety of environmental
factors affecting plants such as stress, diseases, drought, and senescence. This study aims to relate changes in
plant physiological status caused by a biotic stress (viral infection) to leaf spectral reflectance and to identify
wavebands that best discriminate this disease. Young potato plants, cultivar Armada, infected with Potato Virus Y
(PVY) are investigated. Hyperspectral reflectance data were collected by a portable fiber-optics spectrometer in
the visible and near-infrared spectral ranges (400-1100 nm). Wavebands with most disease sensitivity were
identified by means of four empirical approaches and statistical analyses (Student’s t-test, cluster analysis). The
results demonstrate that hyperspectral reflectance data in red and red edge spectral ranges (680—740 nm) allow
detection and quantification of plant stress due to viral infection and are most sensitive to related changes in
biophysical parameters.
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Knroyoeu dymu: xuriepcrieKmparsiHu AucmaHUUuoHHU  u3crned8aHusl, CriekKmparsiHo ompaxxeHue
Ha jlucmama, eupycHa UHGbeKyus, No3uyust Ha YepeeHusi p'b6

Pe3rome: OmkpusaHe Ha borecmu no pacmeHusima 4pe3 mMemold 3a OUCMaHUUOHHU u3cied8aHus,
basupauwy ce Ha xuriepcriekmparsHu udMepeaHusi Ha ompaseHa paduayusi, e npedusgukamersHa obnacm, Kosimo
Moxe Oa OKaxke 3Ha4yuUMmesIHO UKOHOMUYECKO U eKOrl02u4yHO 8b30elicmaue 8bpXxy ynpasrneHuemo Ha dobusume 8
cesickomo cmonaHcmeo. CriekmpanHomo ompaxeHue Ha Jiucmama e YyecmeumesieH rnokasames 3a pasiuyHu
ghakmopu Ha okoslHama cpeda, srusieuu 8bpXy pacmeHusima kamo cmpec, 6osiecmu, cywa u cmapeeHe. Tosa
rpoyysaHe uma 3a ues 0a C8bpXe MPOMeHUME 8b8 (hU3UOI02UYHOMO CLCMOSHUE Ha pacmeHuUsima, npuYuHeHU
om buomuy4eH cmpec (8upycHa uHgpekyusi) u 0a uéeHmubuyupa crnekmpanHume duana3oHu, Koumo Hali-dobpe
pasepaHu4aseam mosa 3aborssieaHe. MN3credeaHu ca mnadu KkapmogheHu pacmeHus copm Apmada, 3apas3eHu ¢
kapmogpeH eupyc Y (PVY). XunepcnekmpanHume ompaxamesiHu 0aHHU ca peaucmpupaHu C [PeHOCUM
criekmpomembp 6b8 eudumama u b6nuskama uHgpadepeeHu obrnacmu Ha crnekmbpa (400-1100 nm).
BwbiiHosume duana3oHu ¢ Hal-2osisimMa YyyecmeumesiHocm KbM 6osiecmma 6sixa udeHmucbuyupaHu ¢ nomouima
Ha Yyemupu emnupuyHU nodxoda u cmamucmuyecku aHanusu (t-mecm Ha CmiodbHM, KIbCMEPEH aHarus).
Pe3ynmamume noka3gam, 4ye xunepcrekmparaHume ompaxamesiHu 0aHHU 8 YepeeHUsi criekmparseH duana3oH
u 8 yepseHuss pbb (680-740 nm) Oasam 6b3MOXHOCM 3a ycmaHoesieaHe U KoruyecmeeHa oOueHka Ha
pacmumernHuss cmpec nopadu eupycHama UHQEKUuUss U ca Hal-4yecmeumesiHU Ha [PpoOMeHUme 8b8
buopusu4HumMme napamempu.
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Introduction

The reliable detection and identification of plant disease and plant stress are very essential for
preventing the loss in yield of the agricultural crops [1]. Monitoring of plant health and detecting
pathogens early are essential to reduce disease spread and facilitate effective management practices.
It is difficult to monitor the plant diseases manually at each stage, which requires more effort and time.
The traditional molecular methods such as serological assays and nucleic acid-based methods (PCR
variants) are the most available and effective to confirm disease diagnosis, but they are not very
reliable at the asymptomatic stage [2]. Remote sensing (RS) technologies are innovative and
alternative methods for effective, reliable, and early detection of pathogen infections. RS techniques
coupled with spectroscopy-based methods allow high spatialization of results, these techniques may
be very useful as rapid preliminary identification of primary infections [3]. The RS scientific community
defines plant disease monitoring as: detection (deviation from healthy), identification (diagnosis of
specific symptoms among others and differentiation of various diseases), and quantification
(measurement of disease severity, e.g., percent leaf area affected) [4].

RS techniques provide opportunities for non-destructive detection of plant diseases, especially
hyperspectral technologies. RS is a technique obtaining information on an object by measuring the
electromagnetic energy reflected/backscattered or emitted by the surface of the Earth [5]. The
increased spatial resolution of recent satellite sensors and the decrease in the cost of data acquisition
are making RS really competitive for the integration with traditional techniques. RS offers the
advantages of a large amount of data from the spectral response and the possibility of working at
different spatial scales, with available sensor resolution from a single leaf level to an entire region [3].

In scientific literature the methods for RS data analyses related to detecting of plant disease
can be categorized into four groups: (1) correlation and regression analysis of disease presence and
severity with spectral response in specific bands and/or intervals of electromagnetic spectrum [6, 7];
(2) assessment and derivation of spectral vegetation indices (SVIs), general or specifically introduced,
sensitive to disease presence [8, 9]; (3) data mining algorithms applied to spectral data processing
and feature extraction/selection for data dimensionality reduction [10, 11]; and (4) machine learning
and classification techniques, parametric and non-parametric, supervised and unsupervised, for
producing results which are classified depending on disease presence/ absence and possibly severity
levels [3, 12, 13].

The plant spectral reflectance is a sensitive indicator of a variety of environmental factors
affecting plants such as stress, diseases, drought, and senescence. Measurement of leaf reflectance
is a fast, non-destructive method for plant health estimation which provides valuable insight into the
physiological performance of the leaves. Reflectance data indicated consistent and diagnostic
differences in the red edge portion (680-740 nm) of the spectrum among the various samples and
populations of leaves. The red edge of the reflectance curves, the maximum slope between the red
and near-infrared (NIR) wavelengths, is strongly correlated with the foliar chlorophyll (Chl) content and
is a good estimator for stress monitoring [14]. The main red edge parameter, red edge position (REP),
is the inflection point of the slope of the spectrum. REP is an important index that indicates the abrupt
leaf reflectance change between 680 nm and 740 nm of the vegetation spectra caused by the
combined effects of strong Chl absorption and leaf internal scattering [15]. Increases in the amount of
Chl result in a broadening of the major Chl absorption feature centred around 680 nm, causing a shift
in the slope and REP towards longer wavelengths [16]. Various techniques have been developed for
the extraction of REP parameters from different sources of spectral data with minimized estimation
error and improved performance.

This study aims to relate the leaf spectral reflectance to changes in plant physiological status
caused by biotic stress (viral infection) and to identify wavebands that best discriminate this disease.
Young potato plants, cultivar Armada, infected with Potato Virus Y (PVY) are investigated. Several
techniques have been applied and compared for accurate estimating of the REP, such as the
maximum of the first derivative, the Lagrangian interpolation method, the linear extrapolation method,
the first derivative main peak decomposition.

Spectral measurements

Young potato plants, cultivar Armada, grown in controlled greenhouse conditions were
investigated. Some of the plants were healthy (control) and some were infected with Potato Virus Y
(PVY). Leaf spectral reflectance data were collected from fresh detached leaves by a portable fibre-
optic spectrometer USB2000 (Ocean Optics, USA) in the visible and NIR spectral ranges
(450-850 nm) in 1170 narrow bands at a spectral resolution of 1.5 nm. The spectral reflectance
characteristics (SRC) of the investigated plants were determined as the ratio between the reflected
from the leaves radiation and this one reflected from the diffuse reflectance standard.
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Data analyses

The application of RS data for plant disease assessment is relying on adequate and effective
data processing techniques because they are intrinsically high dimensional. Especially when dealing
with hyperspectral data, in order to extract the largest amount of information data, processing and
analysis techniques are a crucial asset. The data processing methods used in this study are shown
in Table 1.

Table 1. Applied methods

REP technigue Equation Subject Reference
Maximum of first _ _ g First derivative of
derivative of FDR;, = lle Ry, )/(’%H l’) the SRC in [16]
reflectance spectrum REP = ;"max( FDR, } interval 680 nm
(MFD) #) — 760 nm
_ FDRG, )
(Rict = A N = Ag)
FDR(;
B= : First derivative of
Lagrangian (’Ii =i X;Li - AHI) the SRC in [16]
interpolation method FDR interval 680 nm
C — ()-M) —-760 nm
(’1"(+l - /li )(AHI - Ai—l)
REP — A + i1 )+ By + Ay )+ CQumg + 2)
2(4+B+C)
Red ling: FPR=mA+ e First derivative of
line: FDR = mzﬂ, +c3 the SRC
Linear extrapolation NIR line: (680 Nm—694 nm [17]
_ 6~ and
REP = my —m, 724nm-760 nm)
First derivative main First derivative of | Used in
peak decomposition the SRC this study

1. Maximum of the first derivative (MFD)

First derivatives of the leaf reflectance spectra of healthy and infected potato plants were
calculated using the equation in row 1 (Table 1). REP is determined as a maximum of the peak in the
spectral range 680-760 nm. Extraction of REP, which is based on derivative analysis, minimizes
interpolation and computation errors; it is one of the simpler curve fitting techniques [18].

2. Lagrangian interpolation method

The Lagrangian technique uses three points interpolation for estimating REP. It is applied to
the first-derivative transformation of the reflectance spectrum. The technique fits a second-order
polynomial curve to three bands, which need not be equally spaced, centered around the maximum
slope position. A second derivative is then performed on the Lagrangian equation to determine the
maximum slope position (equations at row 2 in Table 1) [16].

3. Linear extrapolation

The linear extrapolation technique is designed to mitigate the destabilizing effect of the double
peak feature on the correlation between Chl and REP and track changes in slope near 700 nm and
725 nm, where derivative peaks (Fig. 1) occur [17]. The REP is calculated as the wavelength at the
intersection of two straight lines (Eqgs. at row 3 in Table 1) extrapolated through two points on the far-
red flank and two points on the NIR flank of the red edge (680—740 nm) first derivative reflectance
spectrum.

4. First derivative main peak decomposition

This method is applied when a double-peak feature is observed in the first derivative of the
reflectance spectrum. The position and amplitude of the peak around 700 nm can be used as an
estimator of the Chl content. The change in the amplitude of the second peak indicates the change of
the biomass or/and the internal structure of the cellular tissue. The first peak is greater when the Chl
effects dominate, which occurred during the initial and final stages of the plant cycle [19].

Results and discussion

The averaged SRC over all measurements (up to 30 areas) of healthy (control) and infected
with PVY potato leaves are shown in Fig. 1a). The spectral reflectance of infected leaves increased in
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Fig.1 a) Averaged spectral reflectance characteristics (SRC) of healthy and infected potato leaves; b) first
derivative curves of the averaged SRC of healthy and infected leaves

the green peak (500-670 nm) and decreased in the NIR range due to a reduction of the Chl content
and changes in leaf tissue. The first derivative curves in the range of red edge wavelengths (Fig.1b)
are shifted towards the shorter wavelengths because of the narrowing of the Chl absorption peak,
centered around 680 nm. This shift is an indicator of the reduction of the Chl content in leaves and for
changes in the physiological status of plants, respectively, for the presence of a disease. The spectral
distribution of REPs of the reflectance spectra of all measured areas of healthy and infected leaves,
obtained by the first derivative method, is shown in Fig. 2. Two separate clusters are being formed,
testifying to significant changes of data in the red edge spectral range. The location of the REPs and
the results of statistical analysis are given in Table 2.
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Fig. 2. REPs of the reflectance spectra of healthy Fig. 3. REPs of the reflectance spectra of healthy and
and infected potato plants, cultivar Armada. infected potato plants, cultivar Armada.
The averaged REP values are shown by a black X. The averaged REP values are shown by a black X

The three point Lagrangian interpolation technique was applied to the first derivatives of the
reflectance spectra following the algorithm:

1. Wavelength Amax and the value of the maximum of the first derivative (MDF) at Amax were
determined;

2. Values of the first derivative of the reflectance spectra at wavelengths 10 nm before and
10 nm after Amax were determined,;

3. REPs were calculated by the equations in row 2 of Table 1.

The distribution of the REPs, calculated by the Lagrangian interpolation method, is shown in
Fig. 3. Similar to the results from the first method two clusters are separated. The calculated REPs
and the results from statistical analysis are given in Table 2.

Algorithm of the linear extrapolation method:
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1. The slope on the far-red flank of the first derivative reflectance spectrum in red edge was
extrapolated with a straight line through two points (680—-694 nm);
2. The slope on the NIR flank of the first derivative reflectance spectrum in red edge was
extrapolated with a straight line through two points (732-760 nm);
3. The REP was calculated as the wavelength at the intersection of two straight lines

(equations at row 3 in Table 1).
The REPs are shown in Fig. 4 and the results from the statistical analysis are given in Fig. 4.
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Fig. 4. Red edge position of the averaged SRC of healthy and infected potato leaves, cultivar Armada,
obtained by the linear extrapolation method

Algorithm of the first derivative main peak decomposition (FDMPD):

1. FDMPD in the spectral range 670-770 nm was approximated by Origin software into two
peaks. The best approximation was accepted this one with a maximum coefficient of determination R2.

The wavelengths of the peak maximums are shown in Fig.5. The big peak position at 715 nm
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Fig. 5. Red edge position of healthy and infected potato leaves, cultivar Armada, obtained by the first
derivative main peak decomposition method

to 720 nm is an estimator of the Chl content and it is shifted to the shorter wavelengths for infected
leaves with 2.28 nm. The change in the amplitude of the second peak indicates the change in cell

Table 2. Results from statistical analysis (Student’s t- test)

REP of SRC of .
REP of SRC of . Difference,

Method healthy plants, nm mfectendmplants, t stat p nm o1 o2
MFD 711.89 702.48 9.12 il -9.40 4.95 1.05
Lagrangian 712.67 709.14 6,74 wrk -3.53 2.45 | 0.82
interpolation
Linear 694.30 689.35 19.64 -4.95 105 | 071
extrapolation
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structure. The decrease of the amplitude and area of the first peak is related to the degradation of the
leaf pigments, more strongly to the Chl. The results from statistical analysis (Student’s t- test) of the
REP datasets of the SRCs of healthy and infected leaves are given in Table 2, where 1 and o2 are
the dispersions of the REPs distribution.

Conclusions

The red edge position of the reflectance spectra (680—740 nm) strongly correlated with the
foliar Chl content and was extracted and evaluated from hyperspectral data as a good estimator for
plant health. Four techniques for REP detection were applied and compared (maximum of the first
derivative, Lagrangian interpolation method, linear extrapolation method, first derivative main peak
decomposition). The best results were given by the Lagrangian interpolation method (the difference
between REPs of SRC of healthy and infected potato plants is 3.53 nm). The maximum of the first
derivative because of the destabilizing effect of the double-peak feature proved most inaccurate
(difference - 9.4 nm). The results demonstrate that hyperspectral reflectance data in the red and red
edge spectral ranges can be used to quantify the plant stress due to viral infection and related
changes in biophysical parameters.
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