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Abstract.  

 It is considered the exact solvable mathematical model of oscillator parametric 
instability for the case of complex modulation function. The analytical solution of this model is 
presented and numerical calculations are performed to study the instability parameters 
dependence on the modulation function spectrum.  The results obtained are of the great 
interest for nonlinear processes in the space plasma, the astrophysics, for planet researches 
and the biophysics also including cases of stochastic resonances.   
 

Introduction 
 

The studying of parametric instability dynamics is of the great interest for a 
number of applications, in particular, for the electromagnetic radiation generation, in 
the analysis of powerful electromagnetic waves interaction with a plasmas including 
the waves absorption in resonance layers and nonlinear reflection effects, for the 
interpretation of observational data related to alfven waves in the solar wind and so 
on  (see, for example, [1,2] ). In the present paper using the approach developed 
early in [3] for linear oscillator model we consider the dynamics of parametric 
instability at the main resonance in the dependence on the type of function describing 
the modulation of oscillator frequency. The exact solution of this problem is 
presented by analytically with a some arbitrary function. Then by the numerical 
calculations of this solution it was obtained the temporal profile of instability growth 
rate, the amplification coefficient of oscillation amplitude, the threshold of instability 
saturation under the variable level of oscillator modulation and other characteristics in 
the dependence on spectrum of modulation function and  the phase relations of its 
harmonics. It is to be a matter of principle that the problem exact solution includes an 
arbitrary function allowing to change significantly the scenario of oscillation 
generation  

It has been shown the possibility to control the dynamics of parametric 
instability development by the corresponding choice of oscillator frequency 
modulation function. It is considered the parametric instability dynamics in the case of 
modulation function including beyond the regular part additionally the random 
component. The results obtained are of the great interest for the radiophysics and  
the nuclear fusion researchs, in the analysis of nonlinear wave processes in the 
space plasma. It may be useful  for the astrophysics,  the biophysics,   for planet 
studyings and  in the stochastic resonance investigations 



 
 Basic equations and their solution analysis 

 
The simple physico-mathematical model of parametric instability is described by 

the oscillator equation like this    

d2 x / dt2 + ω0
2 ⋅ [ 1 + Q(t) ] x = 0.                                       (1) 

Here the function Q(t), so-called the modulation function, represents the variation of 
oscillator frequency in square. Let us introduce the nondimensional time τ = ω0 ⋅ t. 
The solution of equation  (1) may be written by the following expression    

x1(τ) = x(0) ⋅ exp [ W(τ) ] ⋅ cos τ,                                                                       (2) 
 τ 
W(τ) = ∫ g(τ) ⋅ cos τ ⋅ dτ,                                                                                       (3) 
 0 

where g(τ) is  an arbitrary function. So the modulation function Q(τ) is determined 
now by  

Q(τ) = 3 ⋅ g ⋅ sin τ - g2 ⋅ cos2 τ - (dg / dτ) ⋅ cos τ,                      
(4) 
 ( see for details the monography [3] ). Let us to consider firstly the case of 
monochromatic modulation at the modulation frequency close to the double oscillator 
frequency when we take g(τ) = ε ⋅ cos (1 + µ)τ with frequency detuning µ to be small 
µ << 1. Then using (3), (4) for functions  W(τ), Q(τ) the following formulae are 
obtained  
W(τ) = (ε / 2µ) ⋅ sin µτ + [ε / 2 ⋅ (2 + µ)] sin (2 + µ)τ,  Q(τ) = 3ε ⋅ sin τ ⋅ cos (1 + µ)τ +  

           + ε ⋅ (1 + µ) ⋅ cos τ ⋅ sin (1 + µ)τ  - 0,25 ε2 ⋅ [ cos µτ  + cos (2 + µ)τ ]2 .               
(5)                     

According to formulae (5), in this case the low-frequency (with the frequency µ) 
modulation of oscillation amplitude on the main oscillator frequencyω0  is occurred. 
The maximum of oscillation amplitude amplification is given by η = exp( ε / 2µ ) and it 
is large for the small frequency detuning µ << ε / 2. The typical amplification time is of 
the order of ∆τ ∼ π / 2µ. The plot of modulation function Q(τ) is presented on the 
fig.1a for the case ε = 0,2, µ = 0,1. 
 



 
Fig.1a. The plot of modulation  function.  

 
According to fig.1a there is the fast ( with the 2ω0 frequency ) modulation of oscillator 
frequency in square. Moreover the slow envelope of the level modulations observed  
with the period  T = 2 π / µ . The function W(τ), determining the oscillation 
amplification at the main resonance, is given on the fig.1b for the case of parameter 
choice ε = 0,2, µ = 0,01, when max W(t) = 10. The maximum value of oscillation 
amplitude amplification is very large 2.2 ⋅ 104 . It is necessary now to note the 
important physical circumstance that parametric instability considered is the 
reversible one in its nature. 

 
Fig.1b. The amplification function plot. 

 

It is of the great interst to choose the function g(τ) like this g(t) = b cos( t + θ ) with a 
some phase θ. In the fig.2 results of numerical calculations are presented. For the 
comparison purpose two versions of function g(τ) choice were calculated namely g1(t) 
= b cos( t + θ1 ), g2(t) = b cos( t + θ2 ) with the equal amplitudes b = 0.08 but the 
different phases θ1 = 0 and  θ2 = 1.43. According to the fig.2a the modulation levels in 
both cases are ptactically the same. Nevertheless ( see the fig.2b ) the amplification 
functions W(τ) differ drastically. In the second case the instability growth rate is less 7 



times ! Moreover, for the phase choice θ = π / 2  the instability growth rate is equal 
zero. 

 
Fig.2a. The plots of modulation functions  Q1(t) , Q2(t). 

 

 
Fig.2b. The plots of amplification functions  W1(t) , W2(t).  

 
It is of interest to consider the parametric instability for the case of function g(t) 

to be the sum of harmonics with the close amplitudes but having different phases and 
frequency detunings. The calculations were performed for the case  

g(t) = b ⋅ [ cos ( t + µ1 ⋅ t + θ1 ) + ε2 ⋅ cos ( t + µ2 ⋅ t + θ2 ) + ε2 ⋅ cos ( t - µ2 ⋅ t + θ3 ) 
]  

with parameters b = 0.08 , µ1 = 0 , µ2 = 0.061 , θ1 = 0, θ2 = 1.47 , θ3 = - 0.97, ε2 = 
0.91. According to calculations for the close harmonic amplitudes at the large times 
the main contribution to parametric amplification is provided by the harmonic having 
the zero frequency detuning b ⋅ cos ( t + µ1 ⋅ t + θ1 ), µ1 = 0.  

It was considered also the case of function g(t), containing 11 harmonics with 
eqial amplitudes and small frequency detunigs namely the governing function g(t) 
was taken like this g(t) = ∑n an ⋅ cos ( θn + t + µn ⋅ t ), where µn = β + δ ⋅ ( n – 6 ),  an = 



b , n = 1, 2 …11 and β = 0.002 , δ = 0.007 but θn were random phases. The plott of 
resonance amplification functions  W13(t), W2(t), related to different harmonic groups 
respectively  n = 1, 2, 3, 9, 10, 11 and  n = 4, 5, 6, 7, 8 ,  are given in fig.3a.  
 

 
 

Fig.3a.The amplification functions plots for different harmonic groups. 
  

It is seen that the main amplification of oscillation amplitude is conditioned by the 
most close to the parametric resonance harmonics with numbers n = 4, 5, 6, 7, 8. 
Due to the small but finite frequency detuning of the harmonics with n = 6, the 
oscillation amplification is saturated at the large enough times t ~ 200 when  max 
W(t) ≈ 6.14. So the amplitude  amplification coefficient  exp( Wmax ) is equal  464. The 
plot of modulation function  Q(t) is given on the fig.3b.   
 

 
Fig.3b.  

The special case β = 0, θ6 = 0 when the harmonic n = 6 has the exact 
resonance with maximum contribution to the instability growth rate is shown in the 
fig.3c by the plot of full amplification function W(t). According to fig.3c the instability 
saturation is absent because the function  W(t) is  increased unlimitedly with  time 



growth. 
 

 
Fig.3c. The plot of amplification function W(t) in the case of presence in modulation 

spectrum the  harmonic to have the exact parametric resonance. 
  

Conclusions 
 

The results of analysis performed may be formulated as the following. Firstly, on 
the basis of exact solution the generation of oscillations is studied during the 
parametric instability of oscillator at the main resonance for the complex temporal 
profile of modulation function. It was shown that for the finite frequency detuning of 
modulation function harmonics the parametric instability is saturated with the finite 
amplification of oscillations excited.  

Secondly, in the presence at modulation spectrum the harmonic having the 
exact parametric resonance the saturation of instability is absent. The instability 
growth rate depends significantly on this harmonic phase and for some special 
choice of this phase may be very small or even equal zero.  

Thirdly, it is possible that the parametric instability becomes reversible when the 
oscillations  growth will replaced by their damping. 

Thus the choice of modulation function parameters determined by the function 
g(t), will control the parametric instability development at its linear stage, in particular, 
it is possible to obtain the desirable value of oscillation amplitude, the duration of 
amplitude amplification, to change the temporal profile of oscillations amplitude 
increase. 
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