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Abstract.  
The last remote instruments provided the scientific community two important improvements 

– hyperspectral sensors with increased spatial resolution. This opened new trends in classification 
of small areas of the land cover and anthropogenic objects. Together with this more precise 
spectral and spatial new challenges are posed to the algorithms for data processing, namely the 
exponentially increased volume of data. One promising method to overcome this problem is to 
focus the research only on that features which best describe the object of interest. These features 
may include not only these mentioned above but also textural and geographical ones. The idea of 
this research was to establish a framework for remotely sensed data classification based on non-
linear methods developed recently, such as data mining and kernel based “kd-trees”. The results 
obtained confirmed some improvements and simplicity from computational point, which means 
robustness, and slight increase of the map accuracy. 

This study was partially supported by NSFB under Contracts NZ-1410/04 and MUNZ-1502/05. 
 

INTRODUCTION 

The objective of classification methods is to determine to which class a given 
sample belongs. The observation vector is usually obtained through some measurement 
process and serves as the input to a decision system by which we assign the sample to 
one of the given classes. Probabilistic methods, discriminant analysis, nearest-neighbour 
classifiers, neural networks and decision trees are representative classification techniques. 
In the context of remote sensing, the observation vector consists of the spectral responses 
of land cover objects that form either image pixels or regions. In the paper we demonstrate 
the advantages of using Bayesian classifier, based on a recent very fast algorithm for 
nonparametric density estimation, to the problem of land cover classification.  First we 
compare the performance of the proposed algorithm with several different classification 
algorithms from STATLOG project using a small benchmark dataset. Then a larger data 
set taken from Corine Land Cover project for Bulgaria is used to compare the proposed 
algorithm with the k-nearest neighbours classifier and Naïve Bayes classification. 

As an alternative to the crisp classification methods, where each pixel is classified 
to exactly one class, the soft classification methods assign multiple class memberships to 
a pixel. Soft classification methods provide more realistic interpretation of the real world, 
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where land cover intergrades gradually and boundaries between classes are sometimes 
vague. The accuracy of a crisp classification is usually summarized in an error (confusion) 
matrix, where rows represent classes as observed (ground truth) and columns represent 
predicted classes (Congalton and Green, 1993). The cell (i,j) contains the number of pixels 
from class i, predicted as class j.  

Bayes' decision theory is a fundamental statistical approach to the problem of 
classification (Duda et al., 2000; Fukunaga, 1990). This approach is based on the 
assumption that the decision problem is posed in probabilistic terms, and that all of the 
relevant probability values are known beforehand or estimated from data. We select to use 
the classification approach based on Bayes’ decision rule, because it is known to be 
theoretically optimal in the sense of minimal classification error. Bayes’ rule provides only 
a general framework for the supervised classification and several algorithms can be 
derived if different approaches to estimate probability densities are employed. We favor 
the nonparametric density estimation in order to obtain the necessary probability values, 
instead of assuming that the data is distributed according to one of the standard 
distributions. According to the statistical tests applied to the data used, the hypothesis of 
data normality was rejected. Moreover, it was noted (Landgrebe 2000, Landgrebe 1998) 
that in the context of remote sensing image classification, higher order moments of 
probability distributions are more important for the classification. According to statistical 
tests applied to our data (Jarque-Bera test using the corresponding Matlab function), the 
hypothesis of data normality is rejected. Therefore, we could expect more precise 
classification results if the data distribution is reflected more accurately by a nonparametric 
technique. In addition, we took the advantage of a recently proposed Very Fast Algorithm 
for Multivariate Kernel Density Estimation (Gray, 2003) .We compare the algorithm 
performance with Naïve Bayes approach, which is also based on Bayesian decision 
theory, but relies on a strong assumption of features independence. Another restriction of 
the particular Naïve Bayes implementation used is that the probability densities of the 
features are assumed normal. We also compare the algorithm performance with k-nearest 
neighbor classifier, which classifies a query point based on the class membership of the 
majority of the closest k neighbors of the query point. “Closeness” relies on a predefined 
distance measure, usually Euclidean distance. Obviously the decision is affected by the 
user specified parameter k and the distance measure.  

METHOD 
The nonparametric technique of choice in this paper is the kernel density 

estimation. It is known to approximate the true density of the data if enough data points are 
observed (Silverman 1986.). The idea of kernel density estimation is to model the density 
as a sum of the influences of the data points. The influence of a data point is given by a 
kernel function, which is symmetric and has maximum at the data point. Examples for 
kernel functions are Gaussian bell curve, square wave function, etc. The density function 
takes higher values in regions, where some kernel functions have a significant overlap. 
Given random sample x1, x2,…xn from an unknown true density f(x), the kernel density 

estimate  of f(x) at the point  is  
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where h is the smoothing parameter (bandwidth), n is the number of data, K() is a 

kernel function, which satisfies −∞  . 
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One of the recent advances reduces the complexity (Gray, 2000, Gray, 2003  - Very 
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Fast Multivariate Kernel Density Estimation) and provides fast and accurate computation 
of kernel density estimate by using computational geometry to organize the data. This is 
achieved by a hierarchical representation of the data, which divides the points into 
hierarchy of subsets and caches sufficient statistics for each subset. The implementation 
relies on adaptive algorithms to build k-dimensional tree –kd-tree (Moore 2000). The cost 
of constructing such a tree is O(NlogN), assuming uniform data distribution. An example of 
the cached statistics is the bounding box statistics, which represent a box, containing all 
points at given node. The hierarchy and cached statistics are used to approximately 
estimate the kernel density using dual-tree algorithm (Gray,2003). Two kd-trees are build, 
one for the training set and one for the query data set (e.g. test data set in classification 
scenario). The heart of algorithm is the idea that the interaction between points in a 
bounding box in the first tree and the points in a bounding box in the second tree can be 
approximated by a constant (making use of the cached statistics). If the approximation is 
not sufficiently accurate, then the procedure repeats recursively by comparing children 
nodes of the tree. The required accuracy can be defined by the user, for exact estimation 
the algorithm has to reach the leaf nodes of the tree. Thus the approximation level allows 
tradeoffs between evaluation quality and computation speed. The implementation of this 
algorithm is available as a Matlab toolbox, distributed by GNU LGPL license (Ihler, 2004). 
The kernel bandwidth in each dimension is selected by crossvalidation. 

For the land cover type recognition we developed a Matlab script, making use of 
this toolbox for the probability density estimation. The classification procedure proposed is 
as follows: 

1. The Principal Component Analysis (Kahrunen-Loeve Transform) is performed over 
all training data (all classes) in order to obtain orthogonal variables.  

2. Multivariate conditional probability densities for each of the C classes are estimated 
via dual tree algorithm (Gray, 2003); 

3. Posterior probability for each pixel of training data set is calculated using the 
estimated densities and Eq.1, assuming equal prior probabilities for all classes. 
Thus for a pixel we obtain C probability values representing the degree of class 
membership. p (wi | x), i=1..C. 

4. Pixel-by-pixel classification. A pixel is assigned to the class with maximum posterior 
probability. The accuracy of classification is summarized in an error matrix  

5. Region classification. In land cover type recognition we are more interested in 
recognizing continuous regions than single points. Here we propose two 
approaches in order to make decision for each continuous region of specific cover 
type, which take advantage of the “soft classification”: 
We assess the classification quality by test data set. The test data is also projected 

into principal components space, obtained in the step 1 above, and the posterior 
probability for each pixel of test data set is calculated using densities estimated from the 
training data (step 2). The same statistics as for the training data (confusion matrix, mean 
class probability, KL distance) are calculated and presented in corresponding tables and 
figures. 

 

DATA 

In this research we considered 2 scenarios: 
1. A satellite image (667 x 663 pixels), obtained by Landsat Thematic Mapper is used to assess 
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the behavior of the proposed algorithm. The spectral information from 7 bands is used as 7 
input features; all 12 identified classes are predicted; 

2. The same data set as in the second scenario, but each pixel is represented by 7 values for 
each spectral band and additional 7 values per each of its eight immediate neighbors, thus 
giving (1+8)x7=63 features per pixel. Only six most important classes are predicted. 
 
The results can be summarized as follows: 

• Test set pixel by pixel classification is not good by means of error rate for all 
but few classes. Similar results are obtained by kNN and Naïve Bayes 
algorithms (Table 1).  

• Region classification (by using mean probability over pixels in a region, or KL 
distance between training and test distribution) is correct, except for class 
212. A visual examination of the class 212 reveals that the two regions used 
as test and training set respectively are very different. Perhaps more data for 
this class could help to improve the classification; 

• By using only 7 spectral features, the texture information of the image is 
ignored. This makes classification of regions with similar spectral response 
(for example forests and fruit trees) very hard; 

It is known (Fukunaga, 1990) that to discriminate N classes, at least N-1 features 
are necessary.  Therefore, in this scenario it is unrealistic to expect perfect classification. 
To overcome these shortcomings, the next scenario was considered. 

 

Class\Accuracy 
% 

1NN , 7 spectral bands 5NN, 7 spectral bands Naïve Bayes, 7 
spectral bands 

This paper, 7 
spectral bands 

 Training Test Training Test Training Test Training Test 
112 100 51.10 78.90 61.60 27.7 30.8 49 47.11 
121 100 11.90 20.80 8.7 21.4 37.6 28 27.27 
142 100 2.40 9.50 2.10 0 0 34 22.31 
211 100 7.30 69.70 8.90 14.6 4.6 39 21.09 
212 100 0.10 55.10 0 64.0 1.2 100 0.88 
22 100 26.20 59.30 29.20 28.8 43.4 66 35.31 

231 100 64.60 83.90 75.60 63.8 69.9 72 51.28 
24 100 35.10 40.30 24.10 1.60 1.6 41 53.72 

311 100 92.20 83.60 95.6 84.3 96.6 91 91.72 
32 100 23.50 32.10 17.10 7.00 6.8 34 21.62 

411 100 4.60 17.90 0.40 3.90 1.1 44 22.82 
512 100 94.3 81.40 95.50 82.4 98.6 94 96.96 
All 100 47.24 70.44 48.72 48.52 43.09 57.67 41.01 

Table 1.Training and test accuracy (percent of correctly classified pixels) of kNN, Naïve Bayes 
and nonparametric classification method for the data set in scenario 1 (12 classes, 7 features). 

Class 1NN, 63 principal 
components 

Naïve Bayes, all 63 
principal componentsC 

Naïve Bayes, 12 principal 
components 

This paper, 12 principal 
components 

 Training Test Training  Test Training  Test Training Test 
112 100 58 52 49 69 64 92.05 70.62 
142 100 3.2 16 13 2.40 2.30 90.67 46.43 
221 100 60.2 67 81 45 74 99.42 81.80 
231 100 83.9 54 58 79 82 97.81 74.65 
311 100 95.8 35 98 86 97 99.99 87.83 
512 100 97.7 100 00 85 99.90 100 90.88 

Table 2.Training and test accuracy (percent of correctly classified pixels) of kNN, Naïve Bayes 
and nonparametric classification method for the data set in scenario 2 (6 classes, 63 features). 

CONCLUSIONS 
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The proposed method for non-linear classification of multispectral data provides 
better accuracy than conventional ones. The assigned class-membership of a pixel is a 
“soft classification”, i.e. a probability of a pixel to belong to the class is provided, instead of 
“yes”/“no” answer. This could be very helpful in the context of classification of remote 
sensing imagery with moderate spatial resolution. In addition to pixel-by-pixel classification 
of an image, it allows classification of predefined regions of the image as a whole. The 
classifications of regions as integral objects are accurate even in difficult scenario as using 
only spectral features and discriminating among 12 classes. The high error rate for some 
of the classes is because of the insufficient data and not using the relevant features 
(texture), which will be in a focus of further research. The focus of a future research we put 
on developing better methods for dimensionality reduction of the feature space. 
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